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Initial boundary value problem for the nonlinear 
Schrodinger equation 

R F Bikbaevt and V 0 Tarasovz 
t Leningrad Branch of V ASteklov Mathematical Institute, Fontanka 27, Leningrad 19101 I ,  
USSR * Physics Department, Leningrad University, I May Street 100, Leningrad 198904, USSR 

Received 3 July 1990 

Abstract. The integrable initial boundary value problem on a semi-line for the nonlinear 
SchrSdinger equation is considered. I t  is shown that by means of the BScklund transforma- 
tion this problem can be reduced to the well known Cauchy problem far the same equation 
an  the line. 

1. Introduction 

Nowadays there is considerable interest in investigating boundary-value problems for 
integrable nonlinear partial differential equations [ 1-61, In  the traditional scheme of 
the inverse scattering transform (IST) [7,8] for one-dimensional evolutionary systems 
the Cauchy problem on the line x E (-a, +m) is considered in the class of rapidly- 
decreasing functions at x +  *W. The possibility of efficiently investigating the Cauchy 
problem on the line is one of the main analytical achievements of IST. The periodical 
problem for integrable equations which led to the creation of the far advanced theory 
of finite-gap integration was another traditional object of investigation [7]. 

The investigation of the problem with local boundary conditions was much less 
simple. The first example (the nonlinear Schrodinger equation (NSE) on a semi-line 
with Dirichlet or Neumann boundary conditions) was studied in 191. However, as a 
rule, it was impossible to apply the IST apparatus to solve such problems and the 
investigation was confined to numerical methods. A significant advance was made in 
[ l ]  which suggested a method of obtaining boundary conditions consistent with the 
complete integrability of the model, and gave non-trivial examples of integrable 
boundary problems. For the investigation of the boundary problem on a semi-line for 
the NSE Sklyanin [ l ]  suggested the use of a symmetrical reduction of the auxiliary 
linear problem which might naturally be called the NSE with point spin impurity. Such 
an approach was used in [2] to investigate a mixed boundary problem on a semi-line, 
and in [3] to construct algebro-geometric solutions of boundary problems on a semi-line 
and on an interval (see also [121). 

Habibullin [ 101 suggested another approach to the derivation of integrable boundary 
conditions based on the symmetrical reduction of the’ Backlund transformation (BT) 
associated with the original nonlinear equation. One can show both approaches to be 
equivalent. I n  particular, the impurity L-operator [2,3] plays the role of the initial 
condition for a ‘dressing-up’ matrix in the BT (See section 2). 

0305-4470/91/112507+10$03.50 0 1991 IOP Publishing Ltd 2507 



2508 R F Bikbaev and V 0 Tarasov 

In this paper we will demonstrate the effectiveness of the second approach using 

(1.1) 

the NSE in the attractive case 

iu, + U,, +21 uI2u = 0 

and a mixed boundary condition at the point x = 0 

(U, -2au)l .=,=O (LYEIW). (1.2) 

Our results may be easily transferred to other models allowing an integrable boundary 
condition to he obtained. 

It should be noted that the third approach to boundary problems generally 
equivalent to the former ones was independently suggested in [4] the result of which 
has much in common with those of [2]. 

By the way, the integrable boundary problem for the NSE in the quantum case was 
investigated earlier than the classical one [ l l ] .  

2. Derivation of boundary conditions from BT 

Let us describe the way of obtaining boundary conditions by means of the 'dressing-up' 
procedure (or ET) using the example of a NsE-type complexified system 

2 iu ,+uX,-2u v = O  

iv, - v,,-2v2u =o. 
The linear spectral problem associated with (2.1) has the form [7], 

q ( x ,  A )  = U ( x ,  A)T(x, A )  

u3 = diag( 1 ,  -1) 

In addition to the initial 2x 2 matrix '4'-function, consider the dressed-up function 
+(x, A): 

" ( x ,  A )  = L ( x ,  A)\Y(x,  A )  

DfO A ( x )  = a s ( x )  i, j - 1 , 2  

satisfying equation (2.2) with the substitution of the potentials u ( x )  and v ( x )  for the 
dressed-up potentials ;(x) and C(x). The differential equation on matrix L ( x ,  A) has 
the form: 

L,(x,  A ) =  ~ ( x , A ) L ( x , A ) - L ( x , A ) U ( x , A ) .  (2.4) 

Hence D is a constant diagonal matrix D=diag(d, ,  d2) and, besides, the algebraic 
relations: 

L ( x , A ) = ( A D ( x ) + A ( x ) )  
(2.3) 

2ia,, = d,G-d,u 
(2.5) 

Zia,, =d,v-d,ij 
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and the differential equations: 

a ,a , ,= t ia , , -ua , ,  

a,a,, = f i ~ , ~  - ua2, 

a,a,, = k2,- U R , ,  

a,a,, = fia,, - uaZ2 

are valid. Note that det L(x, A )  = constant, that is 

d ,a , ,+d ,a , ,  =constant =constant. (2.7) 
From the system ( 2 3 ,  (2.6) it follows that 

d , t i - d , u ,  =2 i (Ca2 , -ua , , )  

dlCx - d,u, = 2i(va,,- ;a , , ) .  

It is easy to see that the system (2 .5) ,  (2.6) unambiguously determines (at least locally) 
matrix A ( x ) ,  and therefore C(x), fi(x) at fixed u ( x ) ,  u ( x ) ,  0, A(0) .  The pair u ( x ) ,  
u ( x )  may be called the BT from the functions u ( x )  and u ( x ) .  

The main observation is the following one. Suppose in relation (2 .3)  D = I and we 
demand that the symmetry condition, 

u ( x )  = t i -x )  

u(x) = C(-x) (2.9) 

should be satisfied. Then (see (2.8)) the boundary conditions 

(u,+i(a,,-a,,)u)l.=,=O 

( ~ , + i ( a ~ ~ - a , , ) o ) I , = , = O  
are valid as in [l]. 

One can show that the system ( 2 . 5 ) ,  (2 .6)  in the general case (see appendix A) is 
consistent with the symmetry relation ( 2 . 9 )  if and only if d :  = d :  # 0 and d,a, ,+d,a, ,  = 
0, special cases being of no interest. We shall confine ourselves to the case d ,  = d,  = 1, 
a,,(O) = -a,,(O) = - i q  that is 

L(0, A )  = A -iau3 (2.10) 

(U, -2au)l.=,=O (U, -2au) l .= ,=O.  (2.11) 

The possibility of d ,  = -d ,  may be considered in a similar way (see appendix A). 
This consideration allows the additional reduction of reality: 

u ( x )  = -O(x). (2 .12)  

Under this condition the system (2.1) takes the form of NSE (1.1) and in formulae ( 2 . 3 )  
we may take 

- 
u2L(x ,  i )u2 = L(x, A )  

the spectral problem takes the form 

Px(x, A ) =  U(x,  A)W(x, A )  

(2.13) 

(2.14) 

-!i(x) 0 
U ( x ,  A )  = -ihu3+ 
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and in relations (2.10) and (2.11) 01 becomes real, so that (2.11) transforms into 
boundary condition (1.2). Further we shall confine ourselves to considering the real 
case (2.12). Another real reduction u ( x )  = O(x) will be studied in another paper. 

Under reality conditions (2.12) the system (2.5), (2.6) will have a unique global 
solution at any permissible D and A(0) (see appendix B). Furthermore we shall deal 
only with rapidly decreasing potentials u ( x ) : u ( x ) + O ,  Ixl++m. In this case the 
potential C(x) will also be rapidly decreasing (see appendix C). 

R F Bikbaeu and V 0 Tarasov 

3. Boundary conditions and scattering data 

Let us take u(x) to he a smooth rapidly decreasing function on the line X E  (-m, +a), 
satisfying the symmetry condition 

u ( x )  = C(X). (3.1) 

We think that the dressing-up matrix L(x,  A )  satisfies relation (2.10). We shall show 
that condition (3.1) can be effectively formulated in terms of the scattering data for 
the potential u(x). 

Recall the definition of scattering data. Let W(x, A )  be arbitrary solution of x- 
equation (2.14) with the potential u ( ~ ) .  The transition matrix T(A)  is defined in the 
following way: 

T ( A )  = lim (exp(iAu,x)'P(x, A)V'(-x,  A )  exp(iAu,x)) (ImA=O) (3.2) 

and due to reduction (2.12) it has the form 

X-+m 

'I 

T ( A )  = det T ( A ) =  1. 

An equivalent definition of T(A) as the connection matrix between Jost solutions 
'P*(x, A): 

'P+(x, A ) = ' P - ( x ,  A)T(A)  ImA=O 

follows from (3.2) with 'P(x, A )  = W ( x ,  A ) .  (Remember that 'P&(x, A )  are the solutions 
of equation (2.14) with the following asymptotics 'P&(x, A)-texp(-iAu,x) if x +  *m.) 

It is a matter of common knowledge [8] that in the case of rapidly decreasing 
functions u ( x )  the coefficient a ( A )  has an analytical continuation into the upper 
half-plane C and probably has zeros at points A,, Im A, > 0 there. The Jost function 
columns at these points are proportional to each other: 

Y ( A , ) * ~ ( A , )  = q < ( A , )  ~ ( 4 )  $0, m. (3.3) 

Let us consider all the zeros a ( A )  to he simple and non-real and their number to be 
finite. We shall denote the set S ( h )  = { b ( A ) ,  A,, y(A,), j = 1,. . . , n} of scattering data 
for the potential u ( x ) .  The coefficient a ( A )  is obtained at Im A a0 by the formula 

(3.4) 

We know [8] that between the scattering data S(A) and the potential u(x) there is a 
one-to-one correspondence. 
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hopasif ion 1. The symmetry (3.1) of the potential u(x) is equivalent to the following 
restriction on scattering data S(A): 

- 
a ( - A ) =  a (X)  I 

A -ip 
A+ip b ( - A ) =  b ( A ) -  p = n ( - l ) "  

(3.5) 

ProoJ Let us  first prove the statement (3.5). From the symmetry (3.1) it follows that 
u ? f i ( - x ;  -A)u?= -U(x :  A): hence 

u,$(-x, -A)  ='P(x, A ) M ( A )  (3.7) 

with some matrix M ( A )  independent on x. From the definition (3.2) of the scattering 
matrix and formula (2.3) it follows that 

?(A) = u3T'(-A)u3 = ( A  -ip+u,)T(A)(A -ip-uJ' (3.8) 

where ( A  - ip.cr,) = L(*oO, A )  are the limiting values of dressing-up L-matrix, p + - a ,  
(see appendix C). 

2 -  2 

Lemma 1. The relation 

p+ =p- = p (3.9) 

is valid. 

Proox Using the condition (3.7) twice and taking (2.3) into account, we shall get the 
equaiity 

u&(-x, -A)u,L(x, A )  = M ( A ) M ( - A ) .  (3.10) 

Taking x =  0 and taking into account (2.10) we have M ( A ) M ( - A ) = - ( A 2 + a 2 ) Z .  The 
variable x tending to *cm in (3.10) we get relation (3.9). Lemma 1 is proved. 

Lemma 2. Let n be the number of points of the discrete spectrum A j ,  Im Ai > 0 for the 
potential u ( x ) .  Then p =( - l )"a .  

Roo$ From the relationships (2.10) and (3.7) it follows that M ( O ) = - i d .  Now 
we shall use the representation following from (3.7) Y(x> A ) =  
L-l(x,A)u,,rY(-x, - A ) M ( - A ) ,  and calculate matrix T(A)  in the point A = O :  T(O)= 
( a / p ) I .  On the  other hand, from (3.8) and (3.9) it follows that a(O)= i l ,  b(O)=O,  
T(0) = a(0 ) l .  From the representation (3.4) for a ( A )  it follows that a(0 )  = ( -1)" ,  that 
is the statement of lemma 2 is proved. The formulae (3.5) are readily derived from 
(3.8) and lemmas 1 and 2. 
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Now we shall prove formula (3.6). From the definition (3.3), the Jost function property 
?+(x, A )  = u 3 W - x ,  - A ) u 3 ,  and normalization condition (2.10) we get at x = 0 

R F Bikbaeu and V 0 Tarasou 

(3.11) 

On the other hand due to reality condition (2.12) 

?,(x, .h) = u2'PITI(x, A)u2 

and therefore 
__ 

(3.12) 

Comparing equations (3.11) and (3.12) we come to formula (3.11). One can see that 
due to one-to-one correspondence S(A)- u(x) our consideration can he reversed, that 
is the symmetry property (3.1) of the potential u ( x )  can be derived from the formulae 

0 

From formula (3.6) it follows that purely imaginary points of the discrete spectrum 
A,, Re A j = O  may lie only beyond the interval [ O , i / a ( ] ,  i.e. /A j /> la / .  Note that for the 
finite potential u(x) formula (3.6) can be obtained by analytical continuation from 
formulae (3.5). 

2 q - ( o ,  -Ak)=-y(- .hk) '€ ' i (o,  - A x ) .  

(3.5) and (3.6). Proposition 1 is proved. 

4. Boundary problem for NSE on a semi-line 

Let uo(x) be a smooth function at x 3 0, rapidly decreasing at x ++a and satisfying 
boundary condition (1.2) at x = O .  Then we make the BT &(x) of the function uo(x) 
with the dressing-up matrix L(x, A ) ,  normalized by the condition (2.10). Note, that 
due to (2.5), (2.6) and (2.10) 

Gm = U " ( 0 )  a,&(O) = -J,udO) a:Ii,(o) =a:u,(o) 

Now let us introduce the function u ( x )  defined on the line 

U(X) = u , ( x ) H ( x )  + G0(-x)H(-X) X € W  (4.1) 

where H ( x )  is the Heaviside function: H(x)=(l+sign(x)) /2 .  We can see that u(x)  
is a C2-smooth function rapidly decreasing at 1xI-a and satisfying symmetry (3.1) 
by construction. The higher smoothness u(x) is equivalent to validity of additional 
boundary conditions on the function uo(x) (see appendix D). 

Now we have all that is necessary to solve the following initial boundary problem 
for the NSE on  a semi-line: the construction of the function u(x, t ) ,  satisfying equation 
(1.1) at x > O ,  boundary condition (1.2) and initial condition u(x ,O)  = uo(x). To solve 
this problem let us consider the function u(x) from (4.1) as the initial datum for NSE 

(1.1) on the line; let u(x, 1 )  be a solution of such a Cauchy problem. The scattering 
data for the potential u(x, t )  depend on time in a well known way [81: 

a(A, f) = a ( &  0) 

b ( A ,  r )  = b ( A ,  0) exp(4iA2t) (4.2) 

y(A,, t )  = y(A,, 0 )  exp(4iA;t) 
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and at f = O  satisfy the symmetry conditions (3.5) and (3.6). However, these symmetries 
are clearly compatible with evolution (4.2), hence u ( x ,  I )  satisfies relation (3.1) and 
therefore boundary condition (1.2) at all I. Consequently, the restriction of u(x,  1 )  on 
the positive semi-line gives the solution of the initial boundary value in question at 
all 1. 

Besides, returning to complexified system (2.1), let us consider its solution u(x,  I ) ,  
u(x,  I ) .  Requiring that the BT G(x, I ) ,  C(x, I )  should also be a solution of the system 
(2.1) we shall obtain the equation 

L, (X ,  f , A ) =  ?(x,  t , h ) L ( x ,  I , A ) - L ( x ,  t , h ) V ( x , I , A )  

which is consistent with equation (2.4). Thereby the BT is transferred to solutions of 
system (2.1) and the symmetry relations (2.9) can easily be seen to agree with the 
dynamics over 1. Therefore the suggested method of solving the initial boundary value 
problem in the class of rapidly decreasing functions can be extended to other cases 
(e.g. the class of functions having constant non-zero asymptotics, i.e. those satisfying 
the so-called boundary Conditions of 'finite density'). 

Appendix A 

Let us determine the conditions at which the system (2.5), (2.6) is compatible with the 
symmetry relation (2.9). We shall denote A ( x )  = A ( - x ) ,  and write down the equations, 
which follows from (2.6) and (2.8) after substitution ( x + - x )  and account for the 
relation (2.9) 

a , i , , = C a , , - u i , ,  

J , i Z 2  = ii2, - 
a&,, = E,, - ui,, 

a,&,, = - vi, I 

d,ux-d,Gx = 2 i ( K , , - u i 2 , )  

d2Cx - d,u, = 2i(CiZ2- oi , ,) .  

These equations together with the equations (2.6) and (2.8) form the system M .  5, = 
F ( 5 )  for vector 

S ( x ) = ( u ( x ) .  u ( x ) .  G ( x L  C b ) ,  A ( x ) , A ( X ) ) E @ 1 2  

where F ( f )  is a smooth function. If d i #  d :  the matrix M is reversible and, at least 
near the point x = 0, ( ( x )  is unambiguously determined by the initial value g(0). Finally 
we shall get the six-parametric class of potentials u ( x ) ,  u ( x )  which is not obviously 
sufficient for the solution of the initial boundary value problem. 

Now let d ,  = d, .  Due to (2.5), a I 2 ( x )  and a Z I ( x )  are odd functions, therefore due 
to (2 .6 )  u ( x ) a l , ( x ) -  G ( x ) a z 2 ( x ) ,  C ( x ) a l , ( x ) - o ( x ) a Z 2 ( x )  and a l l ( x ) -  a z 2 ( x )  are even 
functions, hence either a , , ( x ) + a Z 2 ( - x ) = 0  or u ( x ) =  G(-x) and u ( x )  = C(-x) .  In the 
general case it is enough to consider only the first possibility because it contains the 
case of odd potentials u ( x ) .  u ( x ) .  as well. Similarly, in the case d,  = - d ,  we get the 
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relation a,,(x)-a,,(-x)=O. It also is clear that at d:=d: and d,a,,(O)+d,a,,(O)=O 
the system (2.5), (2.6) is indeed consistent with the symmetry relation (2.9). 

I f  d ,  = -d, equation (2.8) becomes an identity. Differentiating (2.8) over x substitut- 
ing x = 0 we get boundary conditions 

R F Bikbaev and V 0 Tarasov 

( u x y  - i (a , ,  +a2,)u,)l,=o=0 

(uyx - i ( a l l  + a22)vx)l r = O  = 0. 

Appendix B 

We shall show that, in the real case (2.121, equations (2.5) and (2.6) are globally 
solvable for any admissible (see (2.13)) initial data L(0. A). Because matrix D S  0 and 
U&, = D then D is a reversible matrix D = diag(d. 2).  The dressing-up matrix L( A) 
can be represented in the form 

L ( A )  = D .  ( A  + D-'A) = D .  (A + A ~ +  A,) 

where h,=constant, TI Ao=O, A,= -AA. In order not to complicate the presentation 

is just necessary for our purpose. The general case is similarly analysed. 

and satisfying the reduction 

by t e ~ h n i ~ a !  d&i!S WP  ha!! c ! o s ~ ! ~  ~ o n n i d ~ r  G E ! ~  the C Z S ~  D =  I, A(O) =-lag;, which 

Let "(x, A )  be the solution of equation (2.14) corresponding to the potential u(x) 

u2"(x, A ) u 2  = "(x, A )  ( E l )  - re- ...LA "e .. ",:A:... :t Z" ~ _^.. "l. *^ Î.̂̂ "̂ .,,,n , \ -  . r r r l . .  > ,  I - ^ ^  il 2,, A _ _ ^  
I U L  W I I U J C  "1""'Ly ,I 1J ~ ' L U u p  I" b,lUUbG Y(U, " , - - I .  I"I1LLllh TI*, A /  (JTT ,L.,,/ U U G  

to (2.7) and (2.10) is degenerate at points A = + i a  at all x. According to (1.2) the 
subspaces ker @(O, *ia)  are produced by vectors (3 and ( y )  respectively. Let us require 
that these subspaces should be the same at all x 

Equation ( 8 2 )  is the system for determination of matrix A(x) 

lAW'(.x,ig)=inT'(.x, in )  

(AUr2(x, -ia) = -iaqz(x, -ia). 

(W' and '4'' are the columns of matrix Y = ("I, V2).) Note that due to the reduction 
(91 )  eigenvectors of matrix A(x) are orthogonal in C2 at all x. So the system (83 )  is 
always uniquely solvable and determines the function ;(x) (see (2.5)). 

Due to the fact that the degeneration points of @-function A =*ia and correspond- 
ing subspaces ker @(x, * i a ) d o  not depend on x, the function +(x, A )  satisfies (see 
[SI) equation (2.14) with the dressed-up potential i (x ) ,  equations (2.5) and (2.6) being 
valid for matrix A(x). Thus we have the global solution of the system (2.5). (2.6) with 
arbitrary admissible initial data A(0). The uniqueness of such solution follows from 
the general theory of ordinary differential equations. 
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Appendix C 

We shall show that if the potential u ( x )  is rapidly decreasing u ( x ) + O ,  Ix/+w, then 
its BT ;(x) is also rapidly decreasing and the dressing-up matrix L(x, A )  has diagonal 
asymptotics 

L(x, A ) +  AD+ A, x --t *co. 

Again we shall only confine ourselves to an interesting case (2.10). Let Y(x, A )  be a 
matrix consisting of the Jost functions columns 

(VI', .lu:)(x, A )  I m A a O  I (wl, w%x, A )  ImASO. 
Y(x, A )  = 

The VI-function obtained is analytical on A in the upper and lower half-planes, and 
at x- *w, IIm AI > 0 has asymptotics (see [SI) 

"(x, A )  + (C,(A)+O(l))  exp(-iAu,x) (C1) 

with some diagonal matrices C,(A) not depending on x. 

ker $(x, i i iy)  being produced by either 
The dressed-up matrix $(x, A )  degenerates in points A = *i8, 8 = Inl, subspaces 

01 

respectively. Let x + + w .  Then taking into account ( C l )  we come to asymptotic 
equalities 

and 

L(+co, i a )  (A) = o 

L(-co.-i.)(:) = O  
in the first case 

L(+w,ift)(y) = O  

L(-co, -i+) (b) = 0 

in the second case. 

Hence 

L(+co, A )  = A - p: = 0 1 2 .  (C2) 

(C3) 

Similarly we find that at x + -m 
p ' = a .  2 L(-w, A )  = A -ip-u3 

From (CZ), (C3) it immediately follows that the potential ;(x) is rapidly decreasing 
(see ( 2 . 5 ) ) .  
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Appendix D 

As we have mentioned, the validity of boundary condition (1.2) for u o ( x )  provides 
C2-smoothness of the function u ( x )  determined by formula (4.1). The requirement of 
higher smoothness of u ( x )  is equivalent to additional boundary conditions on u o ( x )  
of a higher order than the derivatives. They are obtained by means of differentiating 
the equalities (2.7) with the subsequent substitution x = 0. The derivatives from other 
functions can be eliminated using equalities (2.5), (2.6) and (2.9) and their implications. 
The same boundary conditions may be obtained by differentiation of boundary condi- 
tion (1.2) over t and using NSE (1.1). These additional boundary conditions are also 
boundary conditions for higher NSES; they were considered in such terms in [2]. For 
example, the boundary condition 

R F Bikbaev and V 0 Tarasov 

(J:uo-2a(J:u,+4lu,lzu~))l,=,=0 

is equivalent to C4-smoothness of u ( x )  
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